

KBBPPS Knowledge Based Bio-based Products' Pre-Standardization

Work package N° 5 Bottlenecks and impacts on functionality tests

Deliverable N° 5.1: Stakeholder workshop report

Public

Version: 1 Hürth, 27.03.2013 prepared by: nova-Institut GmbH Adriana Sanz Mirabal nova-Institut GmbH Tel.: +49 2233 – 48 14 40 (Office) Fax: +49 2233 – 48 14 50 Email: <u>contact@nova-institut.de</u> Partner website: www.nova-institut.de Project website: www.kbbpps.eu The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013 under grant agreement n° KBBE/FP7EN/312060/"KBBPPS".

The sole responsibility for the content of this publication lies with the authors. It does not necessarily reflect the opinion of the European Communities. The European Commission is not responsible for any use that may be made of the information contained therein.

Table of content

1	Put	blishable summary	4
2	Intr	oduction	5
3	List	t of participants	6
4	Age	enda	8
5	Cor	nclusion	9
	5.1	Identification of the bio-based products to investigate	9
	5.2	Expectations, hurdles and acceptance of bio-based certification methodologies	14

2 Introduction

The following presents the main goals of the first stakeholder workshop organized within the KBBPPS project:

- 1) Presentation of project's objectives and scope as well as a brief description of the tasks and targets of each work package to the workshop attendees.
- 2) Identification of the most relevant bio-based intermediates and products from different branches for the methodology, measurement and validation: Shaping of the product list presented by the nova-Institute.
- 3) Analysis of the need, expectations, hurdles and acceptance of bio-based certification methodologies amongst industry and consumers.

1 Publishable summary

The aim of the European Union's FP7 project "Knowledge Based Bio-based Products' Pre-Standardization (KBBPPS)" is to execute pre- and co-normative research, which will be used directly in the CEN standardization process on the same topic. This will provide the European and global market with horizontal standards on biogenic carbon and biomass content as well as biodegradability that have been assessed on a first set of selected bio-based products.

The main aim of the first stakeholder workshop, part of the functionality work package and led by the nova-Institute, was to get feedback and stakeholders' opinions on the identification of a set of bio-based products, which will be the subject and scope of the project's research work. So the goal was to know the essential product groups for further research that would cover a broad area of research-related questions and also would cover complete market relevance in terms of share, prospect and actual possibilities

For the stakeholder workshop, the nova-Institute sought the participation of important stakeholders from industry, associations and certification bodies and invited them to share their expertise and shape the product list so that it covers a wide range of bio-based products, including bio-based plastics, composites, solvents, lubricants, adhesives, wood plastic composites, and CO_2 -based materials among others.

The list proposed by the nova-Institute was presented and after an open feedback round with the workshop participants, a final list of 26 products was defined.

In addition, the needs, expectations, hurdles and acceptance of bio-based certification methodologies amongst industry and consumers was the focal point of an open brain storm and discussion at the end of the workshop.

The stakeholder workshop took place on 16 January 2013, from 10:30h to 17:00h at the Representation of the Federal State of North Rhine-Westphalia to the European Union, Rue Montoyer 47, 1000 Brussels.

Participation was free of charge and was kept to a maximum of 40 people.

General information about the workshop, together with the agenda, the participant list and the given presentations is still available at <u>http://bio-based.eu/kbbpps-stakeholder/home</u>

3 List of participants

First Name	Name	Company/Organization	City	Country	
Ylwa	Alwarsdotter	SEKAB BioFuels &Chemicals	Örnsköldsvik	Sweden	
Francesca	Dr. Aulenta	BASF SE	Luswigshafen	Germany	
Dr. Achim	Boenke	EC, DG Enterprise and Industry, Chemi- cals Industry Unit	Brussels	Belgium	
Michael	Carus	nova-Institut	Hürth	Germany	
Constantin	Ciupagea	European Commis- sion, Joint Research Centre	Ispra	Italy	
Prof. James	Clark	University of York Green Chemistry Centre	UK	United King- dom	
Bengt	Davidsson	CEPI	Brussels	Belgium	
Antoine	de Forton	Sappi Europe S.A.	Bruxelles	Belgium	
Bruno	De Wilde	OWS nv	Gent	Belgium	
Dr. Francesco	Degli-Innocenti	Novamont	Novara	Italy	
Anna Chloe	Devic	REPSOL	Mostoles, Madrid	Spain	
Dr. Oliver	Ehlert	DIN CERTCO GmbH	Berlin	Germany	
Bakker	Frits	ECN	Petten	Netherlands	
Prof. Dr. Hil- mar	Förstel	TUV Rheinland Agroisolab GmbH	Jülich	Germany	
Dr. Jaap	Hooijmans	ECN	Petten	Netherlands	
Berthold	Hülk	LABNET GmbH	Dülmen	Germany	
Marco	Jansen	Braskem Nether- lands BV	Rotterdam	Netherlands	
Manfred	Kircher	CLIB2021 - Cluster Industrielle Biotech- nologie	Düsseldorf	Germany	
Matthew	Krolac	A and O Filmpac Itd	Olney	United King- dom	
Dr. Harald	Käb	narocon	Berlin	Germany	
Dr. lain	Moore	Croda Europe Ltd	Goole	United King- dom	
Nike	Mortier	OWS	Gent	Belgium	
Huub	Omloo	DSM Engineering Plastics	AP Geleen	Netherlands	
Dr. Thomas	Prasch	BIO.NRW	Düsseldorf	Germany	

Paul	Reinshagen	Biobased Press	Amsterdam	Netherlands	
Adriana	Sanz Mirabal	nova-Institut	Hürth	Germany	
Lena	Scholz	nova-Institut	Hürth	Germany	
Dogan	Sivasligil	Cargill	Vilvoorde	Belgium	
Martin	Snijder	GreenGran BV	Ede	Netherlands	
Thomas	Stintzing	SKZ - TeConA GmbH	Würzburg	Germany	
Hasso	v. Pogrell	European Bioplastics	Berlin	Germany	
Dr. Maarten	van der Zee	Wageningen UR Food & Biobased Research	Wageningen	Netherlands	
Dr. Jeroen	van Soest	Rodenburg Biopoly- mers	Oosterhout NB	Netherlands	
Dr. Richard	Vendamme	Nitto Denko Corpora- tion	Genk	Belgium	
Ward	Vervoort	CEI-Bois aisbl	Brussels	Belgium	
Bart	Vleeschouwers	Boerenbond	Leuven	Belgium	
David Webber		PA Europe - Bioplas- tics Value Chain	Brussels	Belgium	
Harmen	Willemse	NEN	Delft	Netherlands	

5 Conclusion

The following presents the main outcomes of the stakeholder workshop.

5.1 Identification of the bio-based products to investigate

The bio-based products list should let us to identify the most important bio-based intermediates and products for the measurement methodology and validation while also covering the most challenging ones (e.g. extremes or boundaries from the point of view of the analytical complexity) and identifying the problems posed in that case.

In order to achieve the right coverage of the existing bio-based products portfolio, the following classification pathways, by which bio-based products can be classified, were identified:

1) Biomass source

7) Mixing level

The first six classification pathways give a good market overview on bio-based products and would be interesting for the analysis of functional bottlenecks, current amount of renewable raw materials, current market share, structure of suppliers and consumers, potential of bio-based products in different fields and for communication of the results.

The following three and classification pathways would be especially relevant from a measurement and test point of view.

A general feedback on these variables and in what case they pose problems for measurements could help find the most challenging bio-based products.

Definition of the qualities "Biodegradability" is one central goal for the standardisation process.

The bio-based products list was presented to all workshop participants. After an interactive discussion, where all attendees could share their views and expertise, all feedback was gathered and summarized and thus the list was shaped and improved (please see Table 1).

Fig. 1 shows how the proposed products cover the different categories included in the ten different classification pathways above mentioned.

The bio-based products list was once again reviewed in detail by all project partners at the second General Assembly (6 March 2013, Hürth, Germany) and the final version will be publicly presented for a last feedback round at the first KBBPPS Advisory Workshop, on 9 April 2013, Cologne, Germany.

Table 1: Bio-based products list presented at the stakeholder workshop

				Typical average					Volume of		
				Biomass content in		Value chain	Heterogeneity /		Market sector	Market Sector	Growth
	Bio-based product	Market Sector	Biodegradability	This application	Biomass source	Position	Mixing level	State of matter	Size	Share	Potential
	Packaging films			••			Ŭ.				
	(PLA + PBAT+ additives):										
	End product, printed		Industrial			Semifinished					
	1	Packaging films	compostable	40 - 50%	Starch/sugar	(film, printed)	Blend /lavered	Solid	140 kt	< 5%	Medium
	Disposable cups and		Anaerobic			, ,, ,	, . ,				
	plates (PHA coated paper),		Degradation.								
	high calcium carbonate		Industrial								
	containing (mineral fillers)		compostable, home		Starch +						
	2	Food service	composting	80 - 90%	Lignocellulose	End product	Lavered	Solid	2 kt	< 5%	Medium
	Beverage bottles				8	p					
	(Bio-based PET from	Packaging - plastic				End product			700 kt		
	bio- based MEG)	Bottles	No	30 - 87%	Sugar	(b2b)	Monomer mix	Solid	(worldwide)	< 5%	Very high
			-			(* *)					- / 0
	Packaging chips		Home compostable.								
	(Starch-based loose fill		industrial			End product					
	flips)	Packaging	compostable	100%	Starch	(b2b)	Pure starch	Solid		10 20 %	low
	Seat cushions (25% sov-	i uciuging		100/0	Startin	()		Joind		10 10 /0	2011
	Based polios in PU foams)						Monomer level.		100 kt		
	5	Automotive Interior	No	20 - 50%	Plant oil	Semi finished	Mixed on site	Gas in solid	(worldwide)	< 5%	Medium
-	Door trimming.			20 50/0		Seria Anistica	inited off site	dus in solid	(1370	meanan
	Hemp/flax/kenaf/PP-mat	Automotive Interior			Lignocellulose						
	press molded parts	Trimming	No	50 - 80 %	(natural fibers)	Semi finished	Composite	Solid	190 kt	10 20 %	Medium
-		0		50 00 /0	Natural rubber.	Seria Anistica	composite	Joind	400 kt	10 10 /0	meanan
	7 Tires	Automotive - lits	No	50 - 60 %	Starch	Finished product	Blend	Solid	(Germany)	50 100%	Low
	CO2-based PPC-PHA	Consumer goods	Industrial		CO ₂ :				(00111011))		
	vacuum cleaner casing	Consumer Electronics	Compostable	0 - 100%	Carbohydrates	End product	Blend	Solid	< 1 kt	< 5%	Very high
-	Technical high	consumer Electromes	composituble	0-10078	carbonyarates	Lind product	bienu	30110	< 1 KL	< 570	verynign
	nerformance polyamide	Consumer goods									
		Consumer Electrics	No	60 - 80%	Castor oil	End product	Plastic	Solid	50 kt	< 5%	High
-	Consumer electronics	Consumer goods	NO	00-00%	Castor on	Lind product	ridstic	30110	JUKI	< 570	i ligit
	Casing: cellulose acetate	Consumer Electronics	Industrial								
1	and additives	Casing	Compostable	40 - 50%	Lignocellulose	End product	Blend	Solid	90 kt	< 5%	Medium
-		Construction and	composituble	40 50/0	Lightocentriose	End product	biena	50110	50 Kt	< 576	Wicdiam
	Particle Board	Furniture									
	(<95% wood particles	Engineered Wood				Semi finished			9.4 mio t		
1	adhesives and waxes)	Products	No	90 - 100%	Lignocellulose	Product	Composite	Solid	(Germany)	50 100%	Low
-	WPC decking from			50 100/0	Lighteendiose	induce	composite	Solid	(ocimany)	50 100/0	2011
	extruded profiles (60%	Building and									
	wood flour +PP +	Construction -									
1	additives)	Decking's	No	50 - 70 %	Lignocellulose	End product	Composite	Solid	250 kt	10 20%	Medium
-		Building and		50 70 70	Lighterentitose	Lind product	composite	Joind	200 11	10 20/0	
		construction -									
	Remanufactured	Remanufactured			Lignocellulose	Semifinished					
1	construction components	Houses	No	20 - 80 %	Plant oils starch	Product	Composed structure	Solid		20 50%	Medium
	5 P			20 00 /0	riane ons, staren	TTOUGEE	composed structure	50110		20 5070	Wicdiam
		Agriculture and			Starch +	End product			241 mio t		
1	4 Fertilizers	Horticulture - Fertilizer	n.a.	80 - 100%	Byproducts	(b2b)	Blend	Solid	(worldwide)	< 5%	Medium
1			In soil, defined	100/0	- ,	·····			,		
	Mulch Films (starch	Agriculture and	after growing			End product					
1	blends)	horticulture	period	50 - 60%	Starch	(b2b)	Blend	Solid	130 kt	10 20%	Medium
1	Natural Paint: plant oil					·····					
	based, inorganic fillers.					Semi-finished to			2,2 mio t		
1	ovolatile compounds	Paints and coatings	No	< 10%	Plant oil, proteins	end product	Emulsion	Liguid	(Germany)	10 20 %	Low
				1 · · · ·		p = 1 = 2 = 2	1			A 1 1 1	

			In soil, in marine								
			Water, in fresh		Plant oil,						
1	7 Solvents	Solvents	water	50 - 60%	carbohydrates	End product	Pure	Liquid		10 - 20%	low
			in soil, in marine								
			water, in fresh			end product					
1	B Lubricants	Industrial Lubricants	water	50 - 80%	plant oil	(b2b)	solution	Liquid/gel		10 - 20%	medium
			disposable in waste								
	Facial scrub cream with	Personal care Facial	water treatment		Plant oil,			Solid in			
1	PHA pearls	care products	plants	80 - 100%	carbohydrates	End product	Emulsion	gel/liquid		20 - 50%	low
					Cellulose (viscose,						
	Blended fabrics: Viscose,				cotton, flax,	Semi finished			4.7 mio t		
2	Cotton, polyester	Textiles	no	10 - 95%	hemp)	product	Fiber mix	Solid	(worldwide)	< 5%	low
	Boat hulls; glass/carbon		no (inert in marine								
	fiber mats in biobased		and fresh water								
2	I matrix, hand laminated	Sport Yachts	environment)	50 - 60 %	Plant oil	End product	Composite	Solid		< 5%	low
2	2 Natural Oil Polios (NOPs)	ThermosetPrecursors	no	50 - 100%	Plant oil	Precursor	Solution	Liquid	2.2 mio t	5 - 10%	low
			in soil, in marine								
			water, in fresh								
		Resource for cellulose-	water, industrial						300 kt		
2	3 Chemical Pulp	based chemicals	compostable	99 - 100%	Lignocellulose	Treated biomass	fibrous gel	Gel	(Germany)	50 - 100%	low
			in soil, in marine								
		Production Accessory-	water, in fresh			end product					
24	Adhesives and binders	Adhesives / Binders	water	70	% Plant oil, proteins	(b2b)	Emulsion	Liquid		10 - 20 %	low
2	LPG	Camping gas	n.a.	100	% Carbohydrates	end product	Pure	Gas		< 5%	medium
		Resource for organic									
2	5 Biobutane	chemistry	n.a.	100	% Carbohydrates	precursor	Pure	Gas		< 5%	medium

Fig. 1: Overview of the number of products covered by the different categories.

5.2 Expectations, hurdles and acceptance of bio-based certification methodologies

The following presents a summary of the different opinions and ideas expressed during the open discussion and brainstorm at the end of the workshop (please see chapter 4).

The bio-based products market includes a broad range of intermediate products, product components, and ready made products, e.g. bio-based plastics, bio-based lubricants, natural fibres for textiles, composite materials for construction and automotive applications, chemical and pharmaceutical building blocks and organic acids among others. Market and technological barriers are factors that hinder the successful development and market entry of bio-based products. The bio-based market is overlapping to existing markets; only in niche areas completely new markets can emerge. Therefore, many bio-based products must first gain entrance to existing markets, substituting existing products and deal with existing regulations and other barriers (see more examples below) that were set in place before the bio-based alternatives were available. This often led to "non-bio-based" regulations, which in some cases should be reviewed in order to give the bio-based alternatives a fair chance while not compromising the aims of the regulations.

Market entry barriers can come from many sources, such as societal barriers, customer acceptance, regulations, local waste management, etc. In order to develop the use of biobased products in different markets it is necessary to identify and review these barriers. Specific challenges for a bio-based market include, measurement and communication of environmental benefits and product properties (need for LCA skills and data to prove economic, environmental and societal benefits), development of the raw material supply and scaling up from pilot scale to industrial scale production, and balanced regulations and political frameworks to develop a level playing field for biomass applications.

Based on the identified barriers, some of the industry needs are access to funding, technology transfer and development of strategic partnerships. The process from basic research to commercialised bio-based products is normally longer than the one for "conventional" products because of regulatory issues to overcome before commercialisation of the products may occur. This can delay the commercialisation of certain products by several years.

Europe is currently well placed in the markets for innovative bio-based products, building on established knowledge and a leading technological and industrial position. However, perceived uncertainty about product properties and weak market transparency hinder the fast take-up of these products. The social acceptance of bio-based products is normally high but the uncertainty about environmental benefits and product properties sometimes restrict market penetration. Therefore, the acceptance and commercial adaptation of bio-based products can be improved by communication, standardisation and labelling.

